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Dynamic light scattering from an optically trapped microsphere
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Using a single microscope objective lens to optically trap, illuminate, and collect backscattered light of a
dielectric microsphere, we measure the temporal-intensity-autocorrelation fun¢i@iss), and intensity
profiles to obtain the trap stiffness and friction coefficient of the bead. This is an interesting study of an
harmonically bound Brownian particle, with nanometer resolution. We extend the work of Bat-Zi\[Phys.

Rev. Lett.78, 154 (1997] to more general situations allowing for the use of our simpler geometry in other
applications. As examples, we present measurements of the parallel Stokes friction coefficient on the trapped
bead as a function of its distance from a surface and the entropic force of a sHIN&A molecule.
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[. INTRODUCTION size of the scatterer, the scattered intensity depends on the
position of the scatterer in relation to the beam. Small fluc-
A single laser beam focused by a high numerical aperturéuations of the scatterer position in relation to the center of
microscope objective can trap particles near its focus. Thithe laser beam will result in scattered intensity fluctuations.
arrangement is called an optical tweek#l. The use of op- In our case, an infraredR) laser beam traps a polystyrene
tical tweezers to manipulate small objects has been applicdead of 2.8um diameter, that is illuminated by a He-Ne
to many problems of biological interest. Typically, forces in laser beam with a waist around Q.én. In Fig. 1 we show
the pico-Newton range are obtained. Recently, exact axidhe schematic drawing of our experimental setup, that will be
and transverse forces exerted by optical tweezers on a dielegetailed in Sec. IIl A.
tric microsphere were calculaté?l]. By attaching one end of There will be light intensity fluctuations that are related to
a single DNA molecule to a polystyrene bef@iameter 1 to  the Brownian motion of the trapped bead. From the
3 um) and the other end to a microscope slide, one cafemporal-intensity autocorrelation functidCF) one can
stretch a DNA molecule by pulling the bead with an opticalobtain the trap stiffness. This approach was first demon-
tweezer. By knowing the tweezer’s stiffness and measuring )
the displacement of the trapped bead in relation to its origi- Microscope
nal equilibrium position we can determine the force applied
to stretch the DNA molecule. For a review see Stritlal.
[3], and references therein. To determine the stiffness of an
optical tweezer several methods have been discussed in the

literature[4,5]. The trapped bead is a prototype of a Brown- : e &,\@ylx Bead !
ian harmonic oscillator. Therefore, the tweezer’s stiffness can ! h ] :
be obtained from measurements of the Brownian fluctuations - . - :
of the bead. Quasielastic-dynamic-light scatterfi@EDLS) : Coverslip glezo i
is an excellent tool to probe Brownian fluctuations of small | Objective == [°%8°| |

colloidal particleg6]. In the last three decades, QEDLS has i

been extensively used to study colloidal particle and macro- - . ]
molecule diffusion, Doppler velocimetry in hydrodynamics, Digital | i i \ He-Ne
Correlator | ! i N Laser

chemical reactions, surface phenomena at growing solid- :

liquid interfaces, as well as phase transitions in liquid crys- ' i B Aé; L2
tals and in polymers, among others. In these applications, in Photodetector ‘H'EZVNB ; IR

the homodine configuration, the sample is illuminated with a iF© b |Laser
single laser beam whose waist is much larger than the typical il el '

size of the light scatterers, such that many of them are in the <
scattering region. The total scattered light that falls on a pho- Eeh ll@

todetector is the sum of the light scattered by each individual
scatterer. Since they move in relation to each other, the scat-
tered electric fields relative phases change and, due to inter- £jg 1. Experimental setup around the Nikon TE3Q@.is a
ference, the total light intensity in the photodetector fluctu-microscope 20X objective, AP is an anamorphic pristd, andM2
ates in time as determined by the dynamics of the scatterergre dicroic mirrors for maximizing IR reflections) is a d.c. motor
Clearly, if only a single scatterer is within the uniformly to move the IR bean\i3 is a movable prism inside the microscope
illuminated scattering volume, the scattered light intensity ono switch different path<? is a polarizerF is a 632.8 nm line filter,
the detector will be constant even if the scatterer moveshe Photodetector is an EG&G SPCM-0200, and the Digital Cor-
around. However, if the laser beam waist is smaller than theelator is a Brookhaven BI-9000AT.

Monitor
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strated by Bar-Zivet al. [7], and can be applied to more 20
general situations where the light scattering is caused by any
quasilocalized scatterer. Bar-Zét al. coined the name local- L o ]
ized dynamic light scatterin DLS) for this arrangement. 100 - &o .
In this paper we extend their work to more general situations. [ ég’ < ]
Their theoretical derivations and experiments are only appli- L o
cable if the average position of the scatterer is located at the 89 - o
peak of the scattering function. We extend their derivation I &

——

allowing other positions for the scatterer in relation to the & - o
scattering peak and discuss the advantages of doing so. Thi€ &0 i 5
generalization allows us to use a simpler collection optics,— L o
that may make this technique more attractive and easier tc °
use. We work in a backscattering geometry which is advan- §
tageous to use together with optical tweezers, since the sam L g
microscope objective is used to optically trap a béHl
lase), to illuminate it(He-Ne lasey, and to collect the back-
scattered light intensity that falls into a photodetector. From
the decay time of the ACF we obtain the trap stiffness if we T
know the friction on the bead; from its amplitude we obtain 45 - 05 0 05 1 15
the trap stiffness if we know the light scattering profile. X_ (ym)

Therefore, to fully exploit this technique in this geometry, we 0

have to measure precisely the light scattering profile, which

depend; on the po.smpn of the photodetector and the Spher%&llinear to the He-Ne laser for Polyscience bead stock No. 452308.
used. lefgrences in light scattering fr,om Or,]e spht_—:‘re_ to an)-(o is the bead center position in relation to the He-Ne laser. Sec-
other require the measurement of the intensity profile in eacgndary peaks are due to internal reflections inside the bead.
experimental run. However, this technique allows us to se-

lectively measure the stiffness along each direction. By si- . o .
multaneously measuring both relaxation time and amplitud&/IC€ versa. The bead used in this run was a Polyscience bead,
of the fluctuations in the nanometer scale, we present a con®i0Ck number No. 452308. For a bead manufactured by the
plete and beautiful illustration of the physics of a harmoni-ggg‘gelcorgpany’ same spef.c||f|(.:at|ons, dk')fEth another stdok g
cally bound Brownian particle. In addition, as applications of 8, the scattering profile is very different as compare
this technique, we measure the parallel Stokes friction on £ the previous onécrosses in Fig. B Therefore if we intend
microsphere as a function of its height in relation to a surfacd® Make quantitative measurements using such scattering
and the entropic elasticity of-DNA. profiles we have to measure them for each bead used in an

20

FIG. 2. Backscattering intensity profile with the photodetector

20—
II. THEORY r

Our scatterer is a rigid polystyrene sphere of 218 di-
ameter trapped in the anisotropic potential well of an optical
tweezer. There are no internal degrees of freedom, conse
quently the only particle variable is its center of mass posi-
tion, that is specified in relation to the position of the scat- L s
tering function profile peak. In Sec. Il we will describe how - - ¢ ¢
we can do that. We use a Cartesian coordinate system thatig ;[ ¢ ]
specified by taking its origin at the peak of the scattering 2£ L N
profile with thez direction along the propagation direction of
both IR and He-Ne laser beams. The scattering profile is a0 | ¢
determined by the position of the particle in relation to the L ¢ %
incident He-Ne laser and by the photodetector’s position. r °
Examples of such profiles are shown in Figs. 2 and 3. 20 hg ﬁh*# A it i

Figure 2 displays a profile where the He-Ne laser is - & e % A * ]
aligned with the photodetector. The profile is obtained by [ >
changing the position of the bead along one direction, say the oL b
x direction, by moving the trapping IR laser with a mirror. 2 -1.8 -1 05 o 05 1 15
The maximum backscattered intensity occurs when the IR X, (irm)
laser, He-Ne laser and detector are all aligned. The secondary
peaks located at abouR(2), whereR is the radius of the FIG. 3. Crosses: Same as in Fig. 2 but with Polyscience bead
bead, are due to internal reflections inside the bead, since th#ck No. 500816. Diamonds: The photodetector is positioned to
peak at the left occurs when we move the bead to the left anshaximize the left secondary peak.

100
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experimental run. The diamonds in Fig. 3 represent the same
profile as that represented by crosses, but with the photode
tector displaced towards the secondary peak at left. The in-
tensity of this secondary peak increases and becomes as larg
as, or even higher than, the central peak of the previous
profile. Our experiments are carried out with this geometry
because the secondary peak intensities are more reproducibl
and the photodetector is no longer aligned with the He-Ne
laser, which prevents back reflected light from the coverslip =
of the sample cell to hit the photodetector. We can measures
the two-dimensional backscattering profile by moving the
bead along botk andy directions. In our geometry it is not
possible to change the position of the bead alpirgrelation

to the position of the He-Ne laser, since both IR and He-Ne
lasers are focused by the same microscope objective. There
fore, thez position of the bead is fixed by the geometry and

it is very close to the focal point. We can vary tkeandy
position of the bead in relation to the incident He-Ne laser by
moving the IR trapping laser beam.

04 Lo
0.002

00d4 0.006 0.0o8 o 0012

time (s)
A. Temporal-intensity-autocorrelation function (ACF)
for Gaussian profiles FIG. 4. Circles: ACF of a bead oscillating at 100 Hz with am-
e;olitude of ~0.3 um around the positiorkxy=0.3 um. Squares:
Same as above but with the bead oscillating arayy¥0 (second-
order ACH.

Let us assume initially that the scattering profile is a pur

2

et

2 . .
tion are present. Such a mixture can be a problem when

anisotropic Gaussian function in three-dimensions:

) exp( determining the decay time of position fluctuations, since we

may have exponential functions with decay times differing

by a factor of 2 and with variable amplitudes. This effect
The scattering profiles can be slightly asymmetric as showesembles the annoying problem in standard QEDLS where
in Fig. 3, and it is in fact a Lorentzian alorzgLater we shall ~ spurious local oscillator laser light could result in a mixture
deal with more realistic profiles. If the average position ofof homodine and heterodine signdB]. However, we can
the bead isXo,Yo,2o) it executes a bound Brownian motion use this fact in our favor, since here we can easily control the
around this position. Therefore, at each instant the particl@mount of each component by positioning the bead in a con-
position is[Xo+ AX(t),yo+ Ay(t),zo+ Az(t)], and the back- Vvenient location in relation to the scattering profile maxi-

5 2

2
" 20

I(x,y,z)=|0exp(
()

scattered intensity[ Xo+ AX(t),yo+ Ay(t),zo+Az(t)] fluc-
tuates in time accordingly. Thex(t), Ay(t), andAz(t) are

mum. As a consequence we can improve signal-to-noise ra-
tios selectively forx or y position fluctuations. A good way

Gaussian stochastic variables with zero mean values. Eofor checking if one has first or second-order correlations is to

lowing the procedure of Bar-Ziet al. [7] to calculate the

oscillate the sample cell and consequently the bead with a

temporal-intensity autocorrelation function, we obtain theknown frequency: if one has a first-order correlation the re-
general expression sulting ACF will oscillate with the same frequency as the

bead. If one has a second-order correlation, the ACF will
oscillate with twice this frequency.

The circles in Fig. 4 represent an ACF of a trapped bead
oscillating at 100 Hz along the direction, amplitude of or-
der 0.3um andx, of order 0.3um. The squares in Fig. 4
represent the same oscillation but with the bead centered at
the maximum of the scattering profile, i.e;=0. We see
that for xo=0.3 um we have first-order correlation and for
Xo=0 second-order correlation. This result is easy to under-
stand because if the oscillating bead is far from the profile
peak, the scattered intensity will return to the same value
where Xp1=Xo, X02=Yo, Xo3=Z0, 01=0x, 0,=0y, gz when the particle returns to its initial positiof@after one
=0,, AX;=AX, Ax,=Ay, and AXx;=Az. By settingx, cycle). On the other hand, a centered bead will pass through
=0, yo=0, andzy=0 we obtain the expression of Bar-Ziv two positions with the same scattered intensity for each
et al.[7]. An important point in our more general expressioncycle, consequently the ACF will have a frequency that is
is that forxgy, Yo, andz, different than zero, both first-order twice that of the bead. We shall see later that, even for am-
and second-order temporal correlations of the particle posiplitudes compared to typical Brownian amplitud@s our

2

g

H(Ax)1(AX))=12(xo) I
< > P (A + 02— (AxAx)

2
Xoi

X ex y
(AX?)+ o2+ (AXAX]))

)
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case 50 nm at mostwe will use the ratio between the am- ) ) - 2t
plitudes of the oscillating first- and second-order correlations (AXT(0)AXT (1)) =(Ax{)7| L+2expd — —l- ©®
to make sure that the bead is well centered, say in relation to !
they axis and off centered in relation to theaxis. In this

way we select which fluctuationsx or Ay we are going to C. ACF for an optically trapped bead for a general profile:
probe. Strong trap limit

- _ ) ) To obtain the general ACF for an optically trapped bead
B. Position correlation fur.1ct|on of a harmonically bound we substitute the results from E¢8)—(6) into Eq.(2). This
Brownian particle result is valid even if the Brownian amplitudes are larger
If a particle is confined in a harmonic potential well, like than the backscattering Gaussian widths. If the Gaussians are
in the case of our bead trapped by an optical tweezer, thidistorted, or if the profile is not a Gaussian, this analysis is
particle will execute a Brownian motion confined to the po-not valid. In many situations of interest, the optical tweezers
tential well. We can write a Langevin equation for this prob- stiffness in thex andy directions(transverse stiffnegsare
lem: larger than 5<10~2 dyn/cm. Along thez direction the stiff-
ness(axial stiffnes$is about 7 times smaller than the trans-
verse stiffness, since for the IR lasef=o,=0,/7 as well.

Therefore, using Eq(5) we obtain thaty(Ax?)/o;=<0.1,

wherem is the mass of the bead, the friction coefficient is such that the amplitude of the fluctuations is much smaller
y=6m7R, with 7 the viscosity of the surrounding medium than the quth. of the He-Ne Iasgr backscattgrlng profile
andR the bead radiusk; are the curvatures of the potential (Strong trap limit. Then, we can derive an approximate ACF,

energy or stiffnesses along each direction, &t is a sto-  that is valid for more general profiles, by making a Taylor
chastic force that satisfies series expansion of the backscattering profile about a particu-

lar average position of the bead. With this procedure we gain
simplicity and the possibility of analyzing more realistic

(FOF(t"))=2ykgTo(t—t") backscattering profiles. A more general backscattering profile
can be written as

M+ yx; +kix; = (1),

and

(f(1))=0 1(x,y,2)=lgexd —f(x,y,2)]. %)
t))=0,

Expanding this intensity profile in Taylor series about the

wherekg is the Boltzmann constant arfidthe absolute tem- - .
positionXg,Yq,Zo We obtain up to second order

perature.

In our experiments we use polystyrene beads wWith
=1.4% %0*4 cm and densityp=1.05 g/cni in water with
7=10"< Poise. Stiffnes of the optical tweezer varies from IAX)=1(Xn:)] 1+ a:AX+ B AX?

1073 to 10 2 dyn/cm. Since §/m)>k/m, the motion of (%) =1 (xa) EI (asdxit Bidx) ®
the bead is strongly damped and there are two decay times:

Tras=M/ y=10"% s and 74o,= y/k=10"2 to 10 %s. By where

performing an average over the fast time scale one obtains

(8]
I (Xgi)=lgexd —f(Xoi)], 9
(Ax(0)Ax;(t))y=(AxZ)exp —t/7), &)
where of
ai:(_(?_xi)x_, (10)
(AX})=kgT/k (4) i}
and and
4 1[(of\2 [ o%
i (5 ’B'ZEUQ_)Q) _<E) ] (11

For a Gaussian process:

5 5 - ) Since (Ax;)=0 and(AxjAx;)=0 for i#], we obtain the
(AX7(0)AX{(1)) = (AxX7) =+ 2(Ax;(0)Ax;(1))%, approximate ACF,
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1025

(AX)1(AX)) =1 (x0)? 1+ 2 [Bi{(Ax)?) i T

+al(AXAX )+ BE((Ax)Z(AX)H]|.

1.m5

o)

(12 1015 |4

For our purposes, we can simplify this expression even fur- _
ther. Let us make some numerical estimates for a Gaussiais
backscattering profile. In this case

101

1.005 |

1+

L
0001 o.001

a:(_i) ]
| % Xoi Uiz :
and 1 F © -
2 o] oos 04 g.18 oz
,3:1 Xoi| 1 time (s)
2l o

FIG. 5. Typical normalized ACF function fitted tg(t)=1
+Aexp(—tin)+Aexp(-t/r); m,~77.. Inset: Same ACF in a

We notice that the first-order ACF is null at the profile peak ' “** .
semilog plot showing delayed channels.

while the second-order ACF is null &;= o;. Therefore, if
we keep the bead position smaller tham; 2 the first-order

2 2
ACFs will have magnitude much larger than the second- . %0 R R _t
order ACF if X5;> \{Ax?)/2. For bead average positions 9o()=1+ U§<AX yex Tx +O_§(Az yex T,
and y>15 nm andz>90 nm we then basically measure (14)

first-order ACFs. For comparison with the theory we will . .

keepa,> fx and a,=0 in our experiments, then we make  The non-normalized ACF is then

sure that we are looking only at the Brownian fluctuations

along thex direction. Since the motion along tlzedirection GG(t)=[|0exg_xg/zgi)exg_zg/zgg)]z
is much slower than the motion along tkedirection (be-

causek,<k,), it can be easily separated out in the measured 2

X
ACF. In addition, within the range considered and for x| 1+ —i(Ax2>exp(—t/rx)
J(Ax3)/;<0.1, the quantityS;3; ((Ax)2)=1.5x 1072 at Ix
the worst situation Xy=y,=2,=0), which is negligible Zg
compared to unity, therefore from E@®), (1 (AX;))=1(Xo;)- +—4<Azz)exp(—t/rz) , (15
Finally, we write down our first-order normalized ACF as 0,

and finally

(1(AX)I(AX)))
C o (I(AX))?

+ oo

Gintegra(t) = J_w Gg(X0,0.29,t)dxy= const gintegra(t)v

g(t) =1+ a2(AxAX')+ a2(AzAZ'), where

g<t>=1+a§<Ax2>exp( - i) +a§<A22>eXp( - l)

13

gintegra(t) =

1
1+ —(Ax)exp( —t/ 1)
20y

2
+E<A22>exp(—tlr)

4 z
O-Z

Given the restrictions discussed above, Ef) can be ap-
plied to any scattering profile. Therefore, if we measure the
backscattering profile and measure the ACF we have enough
information to obtain the amplitudes and decay times of the The important difference between Edq44) and (16) is
Brownian motion of the trapped bead. An example of a meathe factor multiplying expft/7). Later we will describe two
sured ACF fitted with Eq(13) is shown in Fig. 5. If the experimental methods: the differential method measg(es
profile is a pure Gaussian as given in 4, a2=x3/0% and  and the integral method measu@g.q(t). We shall dis-
a?=7% o4, then Eq.(13) can be written as cuss the advantages and disadvantages of each one.

. (16)
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Il. EXPERIMENTS m———F7——7 77
A. Experimental setup I

The experimental setup is shown in Fig. 1. An inverted
optical microscope Nikon TE300 with an infinity corrected
objective (100X, N.A=1.4) is used to make the optical
tweezer, observe the bead and collect the scattered intensitvg:
In one port of the microscope we use a CCD camera &
(CCD-72 DAGE-MT)) for visualization. In another port we
use a photodetecto(EG&G-Photon Counting Module,
SPCM-200-PQ-F500 with collection diameter of 15@m
mounted in NewporXY stages to be precisely positioned.
The EG&G photodetector delivers TTL pulses ready to be
fed into a Brookhaven BI-9000AT digital correlator. An IR
laser(SDL, 5422-H) operating at 830 nm, with maximum
power of 150 mW is used for the optical tweezer. The light
of a He-Ne lase(SP-127 is the scattering probe. A line filter ¢
for wavelength 632.8 nm is put in front of the photodetector AN P B T T TN T
to eliminate the IR and any light other than the He-Ne laser -08 -04 02 0 02 04 us
light. A half-wave plate and polarizers are used to control the X_ (pm)
intensity and polarization of the He-Ne incident and scat- 0
tered lights. The microscope stage was substituted by New- £ 6, Backscattering intensity profile fitted using the function
port XY stages driven by piezoelectric actuators. The cahbra»ro exd — (4202 —¢,x3)], with o,=0.276+0.008 um andc,=2.1
tion of the motion of the stages was done using a Fabry-Perot 9.1 um=3. This profile was used to illustrate the differential
interferometer built in such a way that a mirror was fixed onmethod.
one stage and another mirror fixed on the microscope. This
interferometer could be switched from ti¥estage to theY  bead, are more reproducible. By changing the position of the
stage. This calibration was periodically checked. A micromo-photodetector their intensities can be maximized, and can
tor (m) was connected to the mirroM1) that drives the IR become even stronger than the intensity of the central peak
laser on the objective. The purpose of this motor is to moven the previous situatiorfdiamonds in Fig. B All of our
the IR beam and, consequently, move the trapped bead ixperiments were performed with the photodetector posi-
relation to the fixed He-Ne laser beam to obtain the backtioned such as to maximize one of the lateral peaks intensity.
scattering profile as a function of time. From an accurateThey change less from one bead to another and the photode-
measurement of the bead speed, time is converted into pogector (out of center does not collect light directly reflected
tion and one gets the backscattering profile as a function dirom the microscope glass slide. In addition, much of the
position. The motion of the bead was recorded with the CCDstray light from other reflections and from spurious scatter-
camera. Images were analyzed, and the bead speed was thrg in the medium can be avoided by collecting the light
extracted. The image pixel size was measured by recordingross polarized with the incident He-Ne beam. It is also ad-
the motion of a bead stuck on the microscope slide andisable to have the same intensity of the IR laser during the
driven by one of the previous calibrated stages. Thus, alneasurement of the backscattering profile as that during ACF
lengths were calibrated using a Fabry-Perot interferometemeasurements. In order to have the maximum contribution to
Samples were made with polystyrene spheres of diametekCFs due to motion of the bead along tkelirection and
2.8 um (Polysciencg in deionized water. The setup was minimum along they direction, we have to be sure that the

Intensity (k

mounted on a homemade isolating table. bead is centered in relation to tlyedirection. We guarantee
this by oscillating the stage along tlyedirection, causing a
B. Experimental procedure motion of the bead, with amplitude comparable to that of the

Brownian amplitude. By measuring oscillatory ACFs along
the y direction (similar to the ones in Fig. 4we minimize
The backscattering profile is measured by moving the IRheir amplitudes while we slightly move the photodetector.
laser beam along theor y direction, and consequently mov- When a minimum amplitude comparable to what is expected
ing the trapped bead in relation to the fixed He-Ne lasefrom a second-order ACF is obtained we know thigt=0.
beam. Typical profiles are shown in Figs. 2 and 3. Thes&Ve check that for different positions,. Under these condi-
profiles have a central peak and two secondary peaks. TH®ns a typical profile along thedirection is shown in Fig. 6.
central peak has great variability from bead to bead. Fotn this case the IR laser intensity was around 6 rfét/the
some beads, the central peak has its maximum intensitgead. The IR beam and the bead moved at a speed of
when the IR beam, He-Ne beam and photodetector are all.0138t0.0004m/s, such that a Stokes force of 0.01 pN
aligned (Fig. 2). For some other beads the central peak iscauses negligible displacements of the bead in relation to the
very weak (crosses in Fig. B Secondary peak intensities, potential well center. Later, this profile will be used for
that we believe come from internal reflections inside theanalysis of the data from measured ACFs as a functiog.of

1. Measurement of the backscattering profile
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2. Measurement of ACFs: Differential method 0 T 00085

ACFs are measured with the digital correlator. The
trapped bead is positioned in a particular positignand
yo=0 of the backscattering profile, as described earlier. At
this fixed position an ACF is recorded. A typical ACF is
shown in Fig. 5, where only 50% of the experimental points
are shown. x
This ACF is normalized by the average intensity of that <
run (correlator delayed channgld'he ACF is fitted with Eq.
(13), and the two time constants,(and 7,) and their am-
plitudes (A= a2(Ax?) and A,=a2(Az%) are then ob- :
tained. We measure a set of ACFs as a function ofxhe oot [
position of the bead in relation to the peak of the scattering
function. The bead is located J®0m above the cell bottom. ok
The time constant, is around 6 to 10 times larger than
and fluctuates from one measurement to another. This varia X (umy)
tion may be caused by our imprecise control of the bead
position in relation to thez direction. Therefore, since the . o ) .
bead is close to the focus of the laser, it is close to the pe s @ function Of.the beagl positiag in r.elatlon to th? maximum of
- . ! e backscattering profile. The continuous line is a fit usiyg
penter. Thus, along thEd|rect|9n we are probably measur- = (%/0.276 — 6.32)%( AX?) with (Ax?) as a free parameter. From
ing a mixture of second and first-order ACFs, with variableihe pest fit(Ax2)=(6.8+0.2)x 104 um?. Filled circles: Values
amounts of each one. Since these two time scalend 7, for the decay timer, as a function ok,. Nearx,=0, 7, drops to
are well separated, we concentrate our analysis on the motiatalf of its value, indicating a second-order ACF as expected from
along thex direction. By measuring the profile along tlke the theory.
direction and from the measurement Af, we can obtain
the tweezer’s transverse stiffness. If the friction is known IV. RESULTS AND DISCUSSION
then the transverse stiffness can also be obtained from the
decay time of ACFs. In this case, for consistency the value of
the transverse stiffness obtained from the amplitude of the We position the bead on the scattering profile in such a
ACFs has to agree with the value obtained from the decayay to measure the motion along the@ndz directions. We
time of ACFs. The method described here allows us to seleasollect the cross-polarized backscattered light. A backscatter-
tively measure the stiffness of the optical tweezer along théng profile obtained along th& direction and aty,=0 is
three directionsk, and k, can be selectively measured by shown in Fig. 6.

006 1 0oos
1 oooes

1 nooa

T(s)

1 nooas
ooz | 1 oooa

1 ooozs

1 nooz

FIG. 7. Empty circles: Values for the first-order ACF amplitudes

A. Differential method

positioning adequately the bead on the scattering prdéjle; ~ By improving the position of the photodetector we can
might, in principle, be obtained from the long time constantobtain backscattering profiles that are single Gaussians. We,
of ACFs. however, used the slightly distorted profile of Fig. 6 to illus-

trate this more general approach. The amplitudés (
= a%(Ax?)) and time constantsr{) of the measured ACFs
[fitted using Eq(13)] as a function ok, are shown in Fig. 7.

In this method a single ACF is accumulated while the As one would expect, the minimum amplitude occurs for
particle slowly moves with constant speed along the scatteo=0 and the time constant measured in this position is
ing profile. Therefore, an integration of the ACF in relation about half of the value far from the pedkecond-order
to X, is performed. This method is much faster than the dif-ACF). We fit the profile of Fig. 6 tol(xo,Y0.2o)
ferential one. Because of the long average in both time and o €XH —f(Xo.Y0.25)] as a function Oko,;’VIchYOZO andz,
position, and since the ACF is collected simultaneously withfixed. From the fit we obtaifi(xo,0,0)=X5/20% — x5, with
the backscattering profile, this method returns more stabl€x=0.2760.008um and c,=2.1+0.1 um™°. Since a,
results. A typical particle speed used is 3 nm/s. This methodF f/dXo=Xo/ 0= 3,5, the amplitudeA,= aZ(Ax?) can
is more easily implemented if the scattering profile along thede written asA, = aZ(Ax?) = (x/0.276 — 6.3x3) %(Ax?). We
x axis can be fitted by a single Gaussian. In this case we cdftien fit the curve forA,Xx, using this expression with
use Eq.(16) to fit the ACF and since we have, from the  (Ax?) as the only fitting parameter. From this fit we obtain
backscattering profile, we can obtdin from the amplitude (Ax?)=(6.8+0.2)x10 * um? that results ink,=0.0059
of the ACF and the friction coefficient from the decay time. =0.0004 dyn/cm, while the value obtained from the average
For a more complex profile, the same information can belecay time of the first-order ACF isk,=0.0058
obtained, however, it would involve a more extensive datat0.0002 dyn/cm, with very good agreement. We used
analysis. Therefore, we prefer to fine adjust the photodetec=1.08y,, where y,=6m7R, with 7=0.902x 10 2 Poise
tor’s position until we get a good Gaussian profile and then(25 °C) andR=1.4x10"% cm. This correction to the fric-
use the integral method described here. tion coefficient is needed because of the finite bead distance

3. Measurement of ACFs: Integral method
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FIG. 8. Circles: Values for the transverse stiffness as a function FIG. 10. Backscattering intensity prof”e fitted to a sing|e Gauss-

of the infrared laser power at the trapped bead. Continuous linggn with 0,=0.268+0.008 um, used to illustrate the integral
Straight line fit as predicted by theoryslope equal to 1.0 method.

+0.1 dyn/Wcm).

(h=10 um) to the coverslip, as we will discuss in Sec. V. tional Stokes force given bl sikes= ¥V. The particle posi-
This result indicates that we have good control over thidion changes from its original equilibrium position to a new
technique and we can safely use it for applications. In Fig. &ne such that the trap forég,,,= kA x has to equilibrate the

we plot the trap transverse stiffness as a function of the IRStokes force. The displacemekk can be obtained from the
laser incident power on the bead, which should be a lineabackscattering profile since there is a correspondence be-
function[2]. tween backscattered intensity and position of the bead. In

By moving the sample cell stage with a fixed speéd equilibrium Fgioes= Frap. Since we knowy we can calcu-
along thex direction, the trapped particle experiments a fric- late the Stokes force for different speedsind measure the
correspondenfx. We can use the value & obtained by

- — . :
L ' ' ' " the previous method to obtain the trap force. Therefore, for
I 1.006 . :
2 - . 4
r 1.005 | ]
= [
£ 15| . : ]
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e
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FIG. 9. Calibration of the tweezer's trapping force using the time (s)

Stokes force method as described in the text. The straight line has
slope very close to unity1.0), indicating the consistency of the FIG. 11. Integrated ACF fitted to E@16), illustrating the inte-
calibration methods. gral method as described in the text.
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FIG. 12. Circles: Values of the parallel Stokes friction on the X (gm)

trapped bead normalized tg,=6m7 7R, as a function of the dis-
tanceh from the coverslip. Continuous curve: Fit using Ed7)
with a initial height correction ohy=0.65 um, as described in the
text.

FIG. 13. Circles: Values for th& component of the entropic
force of a single\-DNA molecule as a function of in a stretching
experiment. Continuous curve: Fit using the Marko and Siggia
model for the DNA entropic force. From the fit one obtains a per-
consistency, in a plot OFtrapX FsiokesWe should obtain a sistence length A=41.8+0.8) nm and a contour lengthL (
straight line with unity slopéFig. 9). In our case the slope =15.55:0.02) um.
obtained is equal to 1.01. The Stokes force method is com-
monly used for optical tweezers calibratif]. From ACF  relation to the coverslip it is necessary, in each run, to mea-
and backscattering profile measurements, both the transversgre the tweezer’s transverse stiffness from the ACF ampli-
stiffness and the friction coefficient on a trapped sphere tude and from its decay time to obtain the parallel friction

can be obtained. coefficient. An expression for the parallel friction coefficient
As mentioned before, the integral method is easier to use v, [ 9

is given by

R\® 45(R\* 1 /[R\%]!
with a good Gaussian profile. In Figs. 10 and 11 we show a -, "~ 16 ﬁ) - ﬁ(ﬁ) - ﬂ;(ﬁ) } ’
typical profile and the integrated ACF. (17)

These data were obtained lat 20 um and temperature

of 26.8 °C. The stiffnesses obtained from the decay time and
from the amplitude of the exponential afg=0.0055 \here y,=67pR=2.27x10°dyns/cm, with 7
+0.0003 dyn/cm andk,=0.0054+0.0002 dyn/cm indicat- —( 859 Poise (26.8 °C) is the water viscos®s= 1.4 um,
ing that the method is consistent. We will use both methodsg the microsphere radius afds the distance from the mi-
for the two applications to be discussed in the next SeCtioncrosphere center to the cover slip. The heigban be varied
by moving the microscope objective in relation to the cover
slip, since the focal point and, consequently, the position of
A. Parallel Stokes friction as a function of height the bead is varied. By moving the objective with the micro-
scope knob(with divisions of one microphwe know the

As an application of the integral method developed abovevariation of height, but not the initial height. In order to

we will measure the parallel Stokes friction coefficient on theobtain it we move the obiective until the bead touches the
microsphere as a function of the distance from the micro- !

. 8_overslip. At this point the height is close to the bead radius.
sphere approaches the surface of the slide. In 1991 we pefVith this procedure an error of about 0/4m in the initial
formed such measurements using QELS. The theoreticf2!ué forh is likely to occur. We normalize the measured
background and the expression for the Stokes force can ata fory, by yo and fit the data using Eq17), where the
found in Feitosa and Mesquif8]. Such measurements were initial height is the only adjustable parameter. To do that, we
also performed by other group$0,11). We revisit this prob-  replaceh by h—hg in Eqg. (17). In Fig. 12 we show the data
lem to show an application of the above technique. Since thand the fit to Eq(17). The height correction that comes from
laser profile may change as we vary the focal distance ithe fit ishy=0.65 um.

B. Integral method

V. APPLICATIONS

041921-9
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B. Entropic elasticity of DNA

By attaching one end of a single-DNA molecule to a

PHYSICAL REVIEW 65 041921

+0.7) nm andL=(15.55-0.03) um. These error bars are
for this set of curves. For other runs the average valukisf

2.8 um polystyrene microsphere and the other end to a miabout 42 nm with an overall error of 2 nm. These values
croscope cover slip, following the procedure of Shivashanka@re in agreement with the literatui®,5]. The contour length
etal. [12], we can keep the microsphere trapped with thel for A-DNA is listed to be 16.5um. We have found
optical tweezer and move the cell stage to stretch the DNAleNngths that vary from 13 to 2am.

The DNA sample is a PBS solution withH=7.4 and

[Na]=150 mM. At the unstretched configuration, the bead

is at the equilibrium position in relation to the tweezer’s
potential. We positioned the bead at a height gi & above
the cover slip. At this height the DNA is only stretched by

5 um, such that its stiffness is much smaller than the twee

zer’s transverse stiffness. Therefore, by measuring ACFs a
knowing the friction coefficient at this height, we can obtain

the tweezer’s transverse stiffness. Then we move the ce

stage very slowly £0.054 xm/s) and record the backscat-

tered intensity. Since we had previously measured the back

scattering profile, again we can obtain the bead displaceme

as the DNA molecule is stretched. From the product of the

tweezer’s transverse stiffnesk, & 0.0080+ 0.0003 dyn/cm

for this run by the bead displacement we can obtain thef

instantaneous force along tleirection due to the DNA. A
plot of the x component of the DNA entropic force as a
function ofx is shown in Fig. 13.

In order to diminish the Brownian noise, the data in Fig.
13 corresponds to an average over four runs for the sa
bead and same DNA. Marko and Siggia have derived al
expression for the DNA entropic force as a function of its
elongation[13], given by

kgT| z 1
Fona=—2— [+ﬁz—z : (18)
L

wherekg is the Boltzmann constant, is the absolute tem-
perature,A is the DNA persistence length, is the DNA
contour length, and is the DNA end-to-end separation. The
x component of the DNA entropic force as a functionxof
can be written as

kgT| Vx?+h? 1 1 X
A L ( /x2+h2)2 4| 2in2
41— —
L

(19

The data in Fig. 13 is fitted using E@L9), with h=5 um
and A and L as free parameters. The result As=(41.8

m

VI. CONCLUSIONS

We have presented a thorough account on the dynamic
light scattering from a microsphere trapped by optical twee-
zers. The results are fully consistent with the theory of the

rownian motion of a harmonically bound particle. By mea-
ﬁuring the backscattering profile and ACFs, we obtain the
amplitude and decay time of the Brownian motion of the
microsphere. From the amplitude we obtain the transverse
rs]fiffness of the optical tweezer. From the decay time, we can
also obtain the transverse stiffness if we know the friction
coefficient of the bead, checking the consistency of the
method. Or since we know the stiffness we can obtain the
riction on the bead if it is unknown. Thus, with this tech-
nigue we can obtain simultaneously the stiffness and the fric-
tion on the bead. It has potential applications in rheological
studies of viscoelastic media. We showed two applications of
the method developed here: in the fifsteasurement of par-

el Stokes friction as a function of heightve obtain the
weezer's stiffness from the ACF amplitude and the friction
on the bead from the decay time. In the secdomasure-
ment of A -DNA entropic elasticity, we obtain the tweezer’s
transverse stiffness from the decay time of ACFs and by
knowing the backscattering profile we can measure the dis-
placement of the bead in relation to its equilibrium position,
when the DNA molecule attached to the bead is stretched.
From the product of the trap stiffness by bead displacement
we obtain the DNA entropic force as a function of its elon-
gation. Results are in good agreement with the literature val-
ues, indicating that the method developed here can be con-
sistently used.
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