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Dynamic light scattering from an optically trapped microsphere

N. B. Viana, R. T. S. Freire, and O. N. Mesquita
Departamento de Fı´sica, ICEX, Universidade Federal de Minas Gerais, Caixa Postal 702, Belo Horizonte, CEP 30123-970, MG, B

~Received 23 October 2001; published 10 April 2002!

Using a single microscope objective lens to optically trap, illuminate, and collect backscattered light of a
dielectric microsphere, we measure the temporal-intensity-autocorrelation functions~ACFs!, and intensity
profiles to obtain the trap stiffness and friction coefficient of the bead. This is an interesting study of an
harmonically bound Brownian particle, with nanometer resolution. We extend the work of Bar-Zivet al. @Phys.
Rev. Lett.78, 154 ~1997!# to more general situations allowing for the use of our simpler geometry in other
applications. As examples, we present measurements of the parallel Stokes friction coefficient on the trapped
bead as a function of its distance from a surface and the entropic force of a singlel-DNA molecule.
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I. INTRODUCTION

A single laser beam focused by a high numerical aper
microscope objective can trap particles near its focus. T
arrangement is called an optical tweezer@1#. The use of op-
tical tweezers to manipulate small objects has been app
to many problems of biological interest. Typically, forces
the pico-Newton range are obtained. Recently, exact a
and transverse forces exerted by optical tweezers on a di
tric microsphere were calculated@2#. By attaching one end o
a single DNA molecule to a polystyrene bead~diameter 1 to
3 mm) and the other end to a microscope slide, one
stretch a DNA molecule by pulling the bead with an optic
tweezer. By knowing the tweezer’s stiffness and measu
the displacement of the trapped bead in relation to its or
nal equilibrium position we can determine the force appl
to stretch the DNA molecule. For a review see Stricket al.
@3#, and references therein. To determine the stiffness o
optical tweezer several methods have been discussed in
literature@4,5#. The trapped bead is a prototype of a Brow
ian harmonic oscillator. Therefore, the tweezer’s stiffness
be obtained from measurements of the Brownian fluctuati
of the bead. Quasielastic-dynamic-light scattering~QEDLS!
is an excellent tool to probe Brownian fluctuations of sm
colloidal particles@6#. In the last three decades, QEDLS h
been extensively used to study colloidal particle and mac
molecule diffusion, Doppler velocimetry in hydrodynamic
chemical reactions, surface phenomena at growing so
liquid interfaces, as well as phase transitions in liquid cr
tals and in polymers, among others. In these applications
the homodine configuration, the sample is illuminated wit
single laser beam whose waist is much larger than the typ
size of the light scatterers, such that many of them are in
scattering region. The total scattered light that falls on a p
todetector is the sum of the light scattered by each individ
scatterer. Since they move in relation to each other, the s
tered electric fields relative phases change and, due to i
ference, the total light intensity in the photodetector fluc
ates in time as determined by the dynamics of the scatte
Clearly, if only a single scatterer is within the uniform
illuminated scattering volume, the scattered light intensity
the detector will be constant even if the scatterer mo
around. However, if the laser beam waist is smaller than
1063-651X/2002/65~4!/041921~11!/$20.00 65 0419
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size of the scatterer, the scattered intensity depends on
position of the scatterer in relation to the beam. Small flu
tuations of the scatterer position in relation to the center
the laser beam will result in scattered intensity fluctuatio
In our case, an infrared~IR! laser beam traps a polystyren
bead of 2.8mm diameter, that is illuminated by a He-N
laser beam with a waist around 0.6mm. In Fig. 1 we show
the schematic drawing of our experimental setup, that will
detailed in Sec. III A.

There will be light intensity fluctuations that are related
the Brownian motion of the trapped bead. From t
temporal-intensity autocorrelation function~ACF! one can
obtain the trap stiffness. This approach was first dem

FIG. 1. Experimental setup around the Nikon TE300.L2 is a
microscope 20X objective, AP is an anamorphic prism,M1 andM2
are dicroic mirrors for maximizing IR reflections,m is a d.c. motor
to move the IR beam,M3 is a movable prism inside the microscop
to switch different paths,P is a polarizer,F is a 632.8 nm line filter,
the Photodetector is an EG&G SPCM-0200, and the Digital C
relator is a Brookhaven BI-9000AT.
©2002 The American Physical Society21-1
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strated by Bar-Zivet al. @7#, and can be applied to mor
general situations where the light scattering is caused by
quasilocalized scatterer. Bar-Zivet al.coined the name local
ized dynamic light scattering~LDLS! for this arrangement
In this paper we extend their work to more general situatio
Their theoretical derivations and experiments are only ap
cable if the average position of the scatterer is located at
peak of the scattering function. We extend their derivat
allowing other positions for the scatterer in relation to t
scattering peak and discuss the advantages of doing so.
generalization allows us to use a simpler collection opt
that may make this technique more attractive and easie
use. We work in a backscattering geometry which is adv
tageous to use together with optical tweezers, since the s
microscope objective is used to optically trap a bead~IR
laser!, to illuminate it~He-Ne laser!, and to collect the back
scattered light intensity that falls into a photodetector. Fr
the decay time of the ACF we obtain the trap stiffness if
know the friction on the bead; from its amplitude we obta
the trap stiffness if we know the light scattering profil
Therefore, to fully exploit this technique in this geometry, w
have to measure precisely the light scattering profile, wh
depends on the position of the photodetector and the sph
used. Differences in light scattering from one sphere to
other require the measurement of the intensity profile in e
experimental run. However, this technique allows us to
lectively measure the stiffness along each direction. By
multaneously measuring both relaxation time and amplit
of the fluctuations in the nanometer scale, we present a c
plete and beautiful illustration of the physics of a harmo
cally bound Brownian particle. In addition, as applications
this technique, we measure the parallel Stokes friction o
microsphere as a function of its height in relation to a surf
and the entropic elasticity ofl-DNA.

II. THEORY

Our scatterer is a rigid polystyrene sphere of 2.8mm di-
ameter trapped in the anisotropic potential well of an opti
tweezer. There are no internal degrees of freedom, co
quently the only particle variable is its center of mass po
tion, that is specified in relation to the position of the sc
tering function profile peak. In Sec. III we will describe ho
we can do that. We use a Cartesian coordinate system th
specified by taking its origin at the peak of the scatter
profile with thez direction along the propagation direction
both IR and He-Ne laser beams. The scattering profile
determined by the position of the particle in relation to t
incident He-Ne laser and by the photodetector’s positi
Examples of such profiles are shown in Figs. 2 and 3.

Figure 2 displays a profile where the He-Ne laser
aligned with the photodetector. The profile is obtained
changing the position of the bead along one direction, say
x direction, by moving the trapping IR laser with a mirro
The maximum backscattered intensity occurs when the
laser, He-Ne laser and detector are all aligned. The secon
peaks located at about (R/2), whereR is the radius of the
bead, are due to internal reflections inside the bead, since
peak at the left occurs when we move the bead to the left
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vice versa. The bead used in this run was a Polyscience b
stock number No. 452308. For a bead manufactured by
same company, same specifications, but another stock~No.
500816!, the scattering profile is very different as compar
to the previous one~crosses in Fig. 3!. Therefore if we intend
to make quantitative measurements using such scatte
profiles we have to measure them for each bead used i

FIG. 2. Backscattering intensity profile with the photodetec
collinear to the He-Ne laser for Polyscience bead stock No. 4523
x0 is the bead center position in relation to the He-Ne laser. S
ondary peaks are due to internal reflections inside the bead.

FIG. 3. Crosses: Same as in Fig. 2 but with Polyscience b
stock No. 500816. Diamonds: The photodetector is positioned
maximize the left secondary peak.
1-2
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DYNAMIC LIGHT SCATTERING FROM AN OPTICALLY . . . PHYSICAL REVIEW E65 041921
experimental run. The diamonds in Fig. 3 represent the s
profile as that represented by crosses, but with the phot
tector displaced towards the secondary peak at left. The
tensity of this secondary peak increases and becomes as
as, or even higher than, the central peak of the previ
profile. Our experiments are carried out with this geome
because the secondary peak intensities are more reprodu
and the photodetector is no longer aligned with the He-
laser, which prevents back reflected light from the covers
of the sample cell to hit the photodetector. We can meas
the two-dimensional backscattering profile by moving t
bead along bothx andy directions. In our geometry it is no
possible to change the position of the bead alongz in relation
to the position of the He-Ne laser, since both IR and He-
lasers are focused by the same microscope objective. Th
fore, thez position of the bead is fixed by the geometry a
it is very close to the focal point. We can vary thex and y
position of the bead in relation to the incident He-Ne laser
moving the IR trapping laser beam.

A. Temporal-intensity-autocorrelation function „ACF…
for Gaussian profiles

Let us assume initially that the scattering profile is a p
anisotropic Gaussian function in three-dimensions:

I ~x,y,z!5I 0 expS 2
x2

2sx
2D expS 2

y2

2sy
2D expS 2

z2

2sz
2D .

~1!

The scattering profiles can be slightly asymmetric as sho
in Fig. 3, and it is in fact a Lorentzian alongz. Later we shall
deal with more realistic profiles. If the average position
the bead is (x0 ,y0 ,z0) it executes a bound Brownian motio
around this position. Therefore, at each instant the part
position is@x01Dx(t),y01Dy(t),z01Dz(t)#, and the back-
scattered intensityI @x01Dx(t),y01Dy(t),z01Dz(t)# fluc-
tuates in time accordingly. TheDx(t), Dy(t), andDz(t) are
Gaussian stochastic variables with zero mean values.
lowing the procedure of Bar-Zivet al. @7# to calculate the
temporal-intensity autocorrelation function, we obtain t
general expression

^I ~Dxi !I ~Dxi
,!&5I 2~x0i !)

i

s i
2

A~^Dxi
2&1s i

2!22^DxiDxi8&
2

3expF2
x0i

2

~^Dxi
2&1s i

21^DxiDxi8&!
G ,

~2!

where x015x0 , x025y0 , x035z0 , s15sx , s25sy , s3
5sz , Dx15Dx, Dx25Dy, and Dx35Dz. By setting x0
50, y050, andz050 we obtain the expression of Bar-Zi
et al. @7#. An important point in our more general expressi
is that forx0 , y0 , andz0 different than zero, both first-orde
and second-order temporal correlations of the particle p
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tion are present. Such a mixture can be a problem w
determining the decay time of position fluctuations, since
may have exponential functions with decay times differi
by a factor of 2 and with variable amplitudes. This effe
resembles the annoying problem in standard QEDLS wh
spurious local oscillator laser light could result in a mixtu
of homodine and heterodine signals@6#. However, we can
use this fact in our favor, since here we can easily control
amount of each component by positioning the bead in a c
venient location in relation to the scattering profile ma
mum. As a consequence we can improve signal-to-noise
tios selectively forx or y position fluctuations. A good way
for checking if one has first or second-order correlations is
oscillate the sample cell and consequently the bead wit
known frequency: if one has a first-order correlation the
sulting ACF will oscillate with the same frequency as t
bead. If one has a second-order correlation, the ACF
oscillate with twice this frequency.

The circles in Fig. 4 represent an ACF of a trapped be
oscillating at 100 Hz along thex direction, amplitude of or-
der 0.3mm andx0 of order 0.3mm. The squares in Fig. 4
represent the same oscillation but with the bead centere
the maximum of the scattering profile, i.e.,x050. We see
that for x050.3 mm we have first-order correlation and fo
x050 second-order correlation. This result is easy to und
stand because if the oscillating bead is far from the pro
peak, the scattered intensity will return to the same va
when the particle returns to its initial position~after one
cycle!. On the other hand, a centered bead will pass thro
two positions with the same scattered intensity for ea
cycle, consequently the ACF will have a frequency that
twice that of the bead. We shall see later that, even for a
plitudes compared to typical Brownian amplitudes~in our

FIG. 4. Circles: ACF of a bead oscillating at 100 Hz with am
plitude of ;0.3 mm around the positionx050.3 mm. Squares:
Same as above but with the bead oscillating aroundx050 ~second-
order ACF!.
1-3
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case 50 nm at most!, we will use the ratio between the am
plitudes of the oscillating first- and second-order correlatio
to make sure that the bead is well centered, say in relatio
the y axis and off centered in relation to thex axis. In this
way we select which fluctuationsDx or Dy we are going to
probe.

B. Position correlation function of a harmonically bound
Brownian particle

If a particle is confined in a harmonic potential well, lik
in the case of our bead trapped by an optical tweezer,
particle will execute a Brownian motion confined to the p
tential well. We can write a Langevin equation for this pro
lem:

mẍi1g ẋi1kixi5 f ~ t !,

wherem is the mass of the bead, the friction coefficient
g56phR, with h the viscosity of the surrounding medium
andR the bead radius,ki are the curvatures of the potenti
energy or stiffnesses along each direction, andf (t) is a sto-
chastic force that satisfies

^ f ~ t ! f ~ t8!&52gkBTd~ t2t8!

and

^ f ~ t !&50,

wherekB is the Boltzmann constant andT the absolute tem-
perature.

In our experiments we use polystyrene beads withR
51.431024 cm and densityr51.05 g/cm3 in water with
h.1022 Poise. Stiffnes of the optical tweezer varies fro
1023 to 1022 dyn/cm. Since (g/m)@Ak/m, the motion of
the bead is strongly damped and there are two decay tim
t fast5m/g.1026 s and tslow5g/k.1022 to 1023 s. By
performing an average over the fast time scale one obt
@8#

^Dxi~0!Dxi~ t !&5^Dxi
2&exp~2t/t i !, ~3!

where

^Dxi
2&5kBT/ki ~4!

and

t i5
g

ki
. ~5!

For a Gaussian process:

^Dxi
2~0!Dxi

2~ t !&5^Dxi
2&212^Dxi~0!Dxi~ t !&2,
04192
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^Dxi
2~0!Dxi

2~ t !&5^Dxi
2&2F112 expS 2

2t

t i
D G . ~6!

C. ACF for an optically trapped bead for a general profile:
Strong trap limit

To obtain the general ACF for an optically trapped be
we substitute the results from Eqs.~3!–~6! into Eq. ~2!. This
result is valid even if the Brownian amplitudes are larg
than the backscattering Gaussian widths. If the Gaussian
distorted, or if the profile is not a Gaussian, this analysis
not valid. In many situations of interest, the optical tweez
stiffness in thex and y directions~transverse stiffness! are
larger than 531023 dyn/cm. Along thez direction the stiff-
ness~axial stiffness! is about 7 times smaller than the tran
verse stiffness, since for the IR lasersx.sy.sz/7 as well.

Therefore, using Eq.~5! we obtain thatA^Dxi
2&/s i<0.1,

such that the amplitude of the fluctuations is much sma
than the width of the He-Ne laser backscattering pro
~strong trap limit!. Then, we can derive an approximate AC
that is valid for more general profiles, by making a Tayl
series expansion of the backscattering profile about a par
lar average position of the bead. With this procedure we g
simplicity and the possibility of analyzing more realist
backscattering profiles. A more general backscattering pro
can be written as

I ~x,y,z!5I 0 exp@2 f ~x,y,z!#. ~7!

Expanding this intensity profile in Taylor series about t
positionx0 ,y0 ,z0 we obtain up to second order

I ~Dxi !5I ~x0i !H 11(
i

~a iDxi1b iDxi
2!J , ~8!

where

I ~x0i !5I 0 exp@2 f ~x0i !#, ~9!

a i5S 2
] f

]xi
D

x0i

, ~10!

and

b i5
1

2 F S ] f

]xi
D

x0i

2

2S ]2f

]xi
2D

x0i

G . ~11!

Since ^Dxi&50 and ^DxiDxj&50 for iÞ j , we obtain the
approximate ACF,
1-4
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^I ~Dxi !I ~Dxi
,!&5I ~x0i !

2F11(
i

@b i ^~Dxi !
2&

1a i
2^DxiDxi8&1b i

2^~Dxi !
2~Dxi8!2&#G .

~12!

For our purposes, we can simplify this expression even
ther. Let us make some numerical estimates for a Gaus
backscattering profile. In this case

a i5S 2
] f

]xi
D

x0i

52
x0i

s i
2

and

b i5
1

2 F S x0i

s i
2D 2

2
1

s i
2G .

We notice that the first-order ACF is null at the profile pe
while the second-order ACF is null atx0i5s i . Therefore, if
we keep the bead position smaller than 2s i , the first-order
ACFs will have magnitude much larger than the seco
order ACF if x0i@A^Dxi

2&/2. For bead average positionsx
and y.15 nm andz.90 nm we then basically measu
first-order ACFs. For comparison with the theory we w
keepax@bx and ay50 in our experiments, then we mak
sure that we are looking only at the Brownian fluctuatio
along thex direction. Since the motion along thez direction
is much slower than the motion along thex direction ~be-
causekz!kx), it can be easily separated out in the measu
ACF. In addition, within the range considered and f
A^Dxi

2&/s i<0.1, the quantity( ib i ^(Dxi)
2&.1.531022 at

the worst situation (x05y05z050), which is negligible
compared to unity, therefore from Eq.~8!, ^I (Dxi)&>I (x0i).
Finally, we write down our first-order normalized ACF as

g~ t !5
^I ~Dxi !I ~Dxi8!&

^I ~Dxi !&
2

,

g~ t !511ax
2^DxDx8&1az

2^DzDz8&,

g~ t !511ax
2^Dx2&expS 2

t

tx
D1az

2^Dz2&expS 2
t

tz
D .

~13!

Given the restrictions discussed above, Eq.~13! can be ap-
plied to any scattering profile. Therefore, if we measure
backscattering profile and measure the ACF we have eno
information to obtain the amplitudes and decay times of
Brownian motion of the trapped bead. An example of a m
sured ACF fitted with Eq.~13! is shown in Fig. 5. If the
profile is a pure Gaussian as given in Eq.~1!, ax

25x0
2/sx

4 and
az

25z0
2/sz

4 , then Eq.~13! can be written as
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gG~ t !511
x0

2

sx
4 ^Dx2&expS 2

t

tx
D1

z0
2

sz
4 ^Dz2&expS 2

t

tz
D .

~14!

The non-normalized ACF is then

GG~ t !5@ I 0 exp~2x0
2/2sx

2!exp~2z0
2/2sz

2!#2

3F11
x0

2

sx
4 ^Dx2&exp~2t/tx!

1
z0

2

sz
4 ^Dz2&exp~2t/tz!G , ~15!

and finally

Gintegral~ t !5E
2`

1`

GG~x0,0,z0 ,t !dx05const gintegral~ t !,

where

gintegral~ t !5F11
1

2sx
2 ^Dx2&exp~2t/tx!

1
z0

2

sz
4 ^Dz2&exp~2t/tz!G . ~16!

The important difference between Eqs.~14! and ~16! is
the factor multiplying exp(2t/tx). Later we will describe two
experimental methods: the differential method measuresg(t)
and the integral method measuresgintegral(t). We shall dis-
cuss the advantages and disadvantages of each one.

FIG. 5. Typical normalized ACF function fitted tog(t)51
1Ax exp(2t/tx)1Az exp(2t/tz); tz'7tx . Inset: Same ACF in a
semilog plot showing delayed channels.
1-5
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III. EXPERIMENTS

A. Experimental setup

The experimental setup is shown in Fig. 1. An invert
optical microscope Nikon TE300 with an infinity correcte
objective ~100X, N.A.51.4! is used to make the optica
tweezer, observe the bead and collect the scattered inten
In one port of the microscope we use a CCD cam
~CCD-72 DAGE-MTI! for visualization. In another port we
use a photodetector~EG&G-Photon Counting Module
SPCM-200-PQ-F500!, with collection diameter of 150mm
mounted in NewportXY stages to be precisely positione
The EG&G photodetector delivers TTL pulses ready to
fed into a Brookhaven BI-9000AT digital correlator. An I
laser ~SDL, 5422-H1! operating at 830 nm, with maximum
power of 150 mW is used for the optical tweezer. The lig
of a He-Ne laser~SP-127! is the scattering probe. A line filte
for wavelength 632.8 nm is put in front of the photodetec
to eliminate the IR and any light other than the He-Ne la
light. A half-wave plate and polarizers are used to control
intensity and polarization of the He-Ne incident and sc
tered lights. The microscope stage was substituted by N
port XY stages driven by piezoelectric actuators. The calib
tion of the motion of the stages was done using a Fabry-P
interferometer built in such a way that a mirror was fixed
one stage and another mirror fixed on the microscope. T
interferometer could be switched from theX stage to theY
stage. This calibration was periodically checked. A microm
tor ~m! was connected to the mirror (M1) that drives the IR
laser on the objective. The purpose of this motor is to mo
the IR beam and, consequently, move the trapped bea
relation to the fixed He-Ne laser beam to obtain the ba
scattering profile as a function of time. From an accur
measurement of the bead speed, time is converted into p
tion and one gets the backscattering profile as a functio
position. The motion of the bead was recorded with the C
camera. Images were analyzed, and the bead speed was
extracted. The image pixel size was measured by recor
the motion of a bead stuck on the microscope slide
driven by one of the previous calibrated stages. Thus,
lengths were calibrated using a Fabry-Perot interferome
Samples were made with polystyrene spheres of diam
2.8 mm ~Polyscience! in deionized water. The setup wa
mounted on a homemade isolating table.

B. Experimental procedure

1. Measurement of the backscattering profile

The backscattering profile is measured by moving the
laser beam along thex or y direction, and consequently mov
ing the trapped bead in relation to the fixed He-Ne la
beam. Typical profiles are shown in Figs. 2 and 3. Th
profiles have a central peak and two secondary peaks.
central peak has great variability from bead to bead.
some beads, the central peak has its maximum inten
when the IR beam, He-Ne beam and photodetector are
aligned ~Fig. 2!. For some other beads the central peak
very weak ~crosses in Fig. 3!. Secondary peak intensitie
that we believe come from internal reflections inside
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bead, are more reproducible. By changing the position of
photodetector their intensities can be maximized, and
become even stronger than the intensity of the central p
in the previous situation~diamonds in Fig. 3!. All of our
experiments were performed with the photodetector po
tioned such as to maximize one of the lateral peaks inten
They change less from one bead to another and the phot
tector ~out of center! does not collect light directly reflecte
from the microscope glass slide. In addition, much of t
stray light from other reflections and from spurious scatt
ing in the medium can be avoided by collecting the lig
cross polarized with the incident He-Ne beam. It is also
visable to have the same intensity of the IR laser during
measurement of the backscattering profile as that during A
measurements. In order to have the maximum contributio
ACFs due to motion of the bead along thex direction and
minimum along they direction, we have to be sure that th
bead is centered in relation to they direction. We guarantee
this by oscillating the stage along they direction, causing a
motion of the bead, with amplitude comparable to that of
Brownian amplitude. By measuring oscillatory ACFs alo
the y direction ~similar to the ones in Fig. 4! we minimize
their amplitudes while we slightly move the photodetect
When a minimum amplitude comparable to what is expec
from a second-order ACF is obtained we know thaty050.
We check that for different positionsx0. Under these condi-
tions a typical profile along thex direction is shown in Fig. 6.
In this case the IR laser intensity was around 6 mW~at the
bead!. The IR beam and the bead moved at a speed
0.013860.0004mm/s, such that a Stokes force of 0.01 p
causes negligible displacements of the bead in relation to
potential well center. Later, this profile will be used fo
analysis of the data from measured ACFs as a function ofx0.

FIG. 6. Backscattering intensity profile fitted using the functi
I 0 exp@2(x0

2/2sx
22cxx0

3)#, with sx50.27660.008mm andcx52.1
60.1 mm23. This profile was used to illustrate the differenti
method.
1-6
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2. Measurement of ACFs: Differential method

ACFs are measured with the digital correlator. T
trapped bead is positioned in a particular positionx0 and
y050 of the backscattering profile, as described earlier.
this fixed position an ACF is recorded. A typical ACF
shown in Fig. 5, where only 50% of the experimental poi
are shown.

This ACF is normalized by the average intensity of th
run ~correlator delayed channels!. The ACF is fitted with Eq.
~13!, and the two time constants (tx and tz) and their am-
plitudes (Ax5ax

2^Dx2& and Az5az
2^Dz2&) are then ob-

tained. We measure a set of ACFs as a function of thex0

position of the bead in relation to the peak of the scatter
function. The bead is located 10mm above the cell bottom
The time constanttz is around 6 to 10 times larger thantx

and fluctuates from one measurement to another. This va
tion may be caused by our imprecise control of the be
position in relation to thez direction. Therefore, since th
bead is close to the focus of the laser, it is close to the p
center. Thus, along thez direction we are probably measu
ing a mixture of second and first-order ACFs, with variab
amounts of each one. Since these two time scalestz andtx

are well separated, we concentrate our analysis on the mo
along thex direction. By measuring the profile along thex
direction and from the measurement ofAx , we can obtain
the tweezer’s transverse stiffness. If the friction is kno
then the transverse stiffness can also be obtained from
decay time of ACFs. In this case, for consistency the value
the transverse stiffness obtained from the amplitude of
ACFs has to agree with the value obtained from the de
time of ACFs. The method described here allows us to se
tively measure the stiffness of the optical tweezer along
three directionskx and ky can be selectively measured b
positioning adequately the bead on the scattering profilekz

might, in principle, be obtained from the long time consta
of ACFs.

3. Measurement of ACFs: Integral method

In this method a single ACF is accumulated while t
particle slowly moves with constant speed along the sca
ing profile. Therefore, an integration of the ACF in relatio
to x0 is performed. This method is much faster than the d
ferential one. Because of the long average in both time
position, and since the ACF is collected simultaneously w
the backscattering profile, this method returns more sta
results. A typical particle speed used is 3 nm/s. This met
is more easily implemented if the scattering profile along
x axis can be fitted by a single Gaussian. In this case we
use Eq.~16! to fit the ACF and since we havesx from the
backscattering profile, we can obtainkx from the amplitude
of the ACF and the friction coefficient from the decay tim
For a more complex profile, the same information can
obtained, however, it would involve a more extensive d
analysis. Therefore, we prefer to fine adjust the photode
tor’s position until we get a good Gaussian profile and th
use the integral method described here.
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IV. RESULTS AND DISCUSSION

A. Differential method

We position the bead on the scattering profile in suc
way to measure the motion along thex andz directions. We
collect the cross-polarized backscattered light. A backsca
ing profile obtained along thex direction and aty050 is
shown in Fig. 6.

By improving the position of the photodetector we c
obtain backscattering profiles that are single Gaussians.
however, used the slightly distorted profile of Fig. 6 to illu
trate this more general approach. The amplitudesAx

5ax
2^Dx2&) and time constants (tx) of the measured ACFs

@fitted using Eq.~13!# as a function ofx0 are shown in Fig. 7.
As one would expect, the minimum amplitude occurs

x050 and the time constant measured in this position
about half of the value far from the peak~second-order
ACF!. We fit the profile of Fig. 6 to I (x0 ,y0 ,z0)
5I 0 exp@2f(x0,y0,z0)# as a function ofx0, with y050 andz0

fixed. From the fit we obtainf (x0,0,0)5x0
2/2sx

22cxx0
3 , with

sx50.27660.008mm and cx52.160.1 mm23. Since ax

5] f /]x05x0 /sx
223cxx0

2 , the amplitudeAx5ax
2^Dx2& can

be written asAx5ax
2^Dx2&5(x0/0.276226.3x0

2)2^Dx2&. We
then fit the curve forAx3x0 using this expression with
^Dx2& as the only fitting parameter. From this fit we obta
^Dx2&5(6.860.2)31024 mm2 that results inkx50.0059
60.0004 dyn/cm, while the value obtained from the avera
decay time of the first-order ACF iskx50.0058
60.0002 dyn/cm, with very good agreement. We usedg
51.08g0, where g056phR, with h50.90231022 Poise
(25 °C) andR51.431024 cm. This correction to the fric-
tion coefficient is needed because of the finite bead dista

FIG. 7. Empty circles: Values for the first-order ACF amplitud
as a function of the bead positionx0 in relation to the maximum of
the backscattering profile. The continuous line is a fit usingAx

5(x0/0.276226.3x0
2)2^nx2& with ^nx2& as a free parameter. From

the best fit^nx2&5(6.860.2)31024 mm2. Filled circles: Values
for the decay timetx as a function ofx0. Nearx050, tx drops to
half of its value, indicating a second-order ACF as expected fr
the theory.
1-7
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(h510 mm) to the coverslip, as we will discuss in Sec.
This result indicates that we have good control over t
technique and we can safely use it for applications. In Fig
we plot the trap transverse stiffness as a function of the
laser incident power on the bead, which should be a lin
function @2#.

By moving the sample cell stage with a fixed speedV
along thex direction, the trapped particle experiments a fr

FIG. 8. Circles: Values for the transverse stiffness as a func
of the infrared laser power at the trapped bead. Continuous
Straight line fit as predicted by theory~slope equal to 1.0
60.1 dyn/W cm).

FIG. 9. Calibration of the tweezer’s trapping force using t
Stokes force method as described in the text. The straight line
slope very close to unity~1.01!, indicating the consistency of th
calibration methods.
04192
s
8
R
ar

-

tional Stokes force given byFStokes5gV. The particle posi-
tion changes from its original equilibrium position to a ne
one such that the trap forceF trap5kxDx has to equilibrate the
Stokes force. The displacementDx can be obtained from the
backscattering profile since there is a correspondence
tween backscattered intensity and position of the bead
equilibrium FStokes5F trap. Since we knowg we can calcu-
late the Stokes force for different speedsV and measure the
correspondentDx. We can use the value ofkx obtained by
the previous method to obtain the trap force. Therefore,

n
e:

as

FIG. 10. Backscattering intensity profile fitted to a single Gau
ian with sx50.26860.008 mm, used to illustrate the integra
method.

FIG. 11. Integrated ACF fitted to Eq.~16!, illustrating the inte-
gral method as described in the text.
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consistency, in a plot ofFtrap3FStokeswe should obtain a
straight line with unity slope~Fig. 9!. In our case the slope
obtained is equal to 1.01. The Stokes force method is c
monly used for optical tweezers calibration@5#. From ACF
and backscattering profile measurements, both the transv
stiffness and the friction coefficientg on a trapped spher
can be obtained.

B. Integral method

As mentioned before, the integral method is easier to
with a good Gaussian profile. In Figs. 10 and 11 we sho
typical profile and the integrated ACF.

These data were obtained ath520 mm and temperature
of 26.8 °C. The stiffnesses obtained from the decay time
from the amplitude of the exponential arekx50.0055
60.0003 dyn/cm andkx50.005460.0002 dyn/cm indicat-
ing that the method is consistent. We will use both meth
for the two applications to be discussed in the next secti

V. APPLICATIONS

A. Parallel Stokes friction as a function of height

As an application of the integral method developed ab
we will measure the parallel Stokes friction coefficient on t
microsphere as a function of the distance from the mic
scope coverslip. The Stokes force increases as the m
sphere approaches the surface of the slide. In 1991 we
formed such measurements using QELS. The theore
background and the expression for the Stokes force ca
found in Feitosa and Mesquita@9#. Such measurements we
also performed by other groups@10,11#. We revisit this prob-
lem to show an application of the above technique. Since
laser profile may change as we vary the focal distance

FIG. 12. Circles: Values of the parallel Stokes friction on t
trapped bead normalized tog056phR, as a function of the dis-
tanceh from the coverslip. Continuous curve: Fit using Eq.~17!
with a initial height correction ofh050.65mm, as described in the
text.
04192
-

rse

e
a

d

s
.

e

-
ro-
er-
al
be

e
in

relation to the coverslip it is necessary, in each run, to m
sure the tweezer’s transverse stiffness from the ACF am
tude and from its decay time to obtain the parallel fricti
coefficient. An expression for the parallel friction coefficie
is given by

g //

g0
5F12

9

16S R

h D1
1

8 S R

h D 3

2
45

256S R

h D 4

2
1

16S R

h D 5G21

,

~17!

where g056phR52.2731025 dyn s/cm, with h
50.859 Poise (26.8 °C) is the water viscosity,R51.4 mm,
is the microsphere radius andh is the distance from the mi
crosphere center to the cover slip. The heighth can be varied
by moving the microscope objective in relation to the cov
slip, since the focal point and, consequently, the position
the bead is varied. By moving the objective with the micr
scope knob~with divisions of one micron! we know the
variation of height, but not the initial height. In order t
obtain it we move the objective until the bead touches
coverslip. At this point the height is close to the bead radi
With this procedure an error of about 0.5mm in the initial
value for h is likely to occur. We normalize the measure
data forg // by g0 and fit the data using Eq.~17!, where the
initial height is the only adjustable parameter. To do that,
replaceh by h2h0 in Eq. ~17!. In Fig. 12 we show the data
and the fit to Eq.~17!. The height correction that comes from
the fit is h050.65mm.

FIG. 13. Circles: Values for thex component of the entropic
force of a singlel-DNA molecule as a function ofx in a stretching
experiment. Continuous curve: Fit using the Marko and Sig
model for the DNA entropic force. From the fit one obtains a p
sistence length (A541.860.8) nm and a contour length (L
515.5560.02) mm.
1-9
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B. Entropic elasticity of DNA

By attaching one end of a singlel-DNA molecule to a
2.8 mm polystyrene microsphere and the other end to a
croscope cover slip, following the procedure of Shivashan
et al. @12#, we can keep the microsphere trapped with
optical tweezer and move the cell stage to stretch the DN
The DNA sample is a PBS solution withpH57.4 and
@Na#5150 mM. At the unstretched configuration, the be
is at the equilibrium position in relation to the tweeze
potential. We positioned the bead at a height of 5mm above
the cover slip. At this height the DNA is only stretched b
5 mm, such that its stiffness is much smaller than the tw
zer’s transverse stiffness. Therefore, by measuring ACFs
knowing the friction coefficient at this height, we can obta
the tweezer’s transverse stiffness. Then we move the
stage very slowly (;0.054mm/s) and record the backsca
tered intensity. Since we had previously measured the b
scattering profile, again we can obtain the bead displacem
as the DNA molecule is stretched. From the product of
tweezer’s transverse stiffness (kx50.008060.0003 dyn/cm
for this run! by the bead displacement we can obtain
instantaneous force along thex direction due to the DNA. A
plot of the x component of the DNA entropic force as
function of x is shown in Fig. 13.

In order to diminish the Brownian noise, the data in F
13 corresponds to an average over four runs for the s
bead and same DNA. Marko and Siggia have derived
expression for the DNA entropic force as a function of
elongation@13#, given by

FDNA5
kBT

A F z

L
1

1

4S 12
z

L D 2 2
1

4G , ~18!

wherekB is the Boltzmann constant,T is the absolute tem
perature,A is the DNA persistence length,L is the DNA
contour length, andz is the DNA end-to-end separation. Th
x component of the DNA entropic force as a function ofx
can be written as

Fx5
kBT

A F Ax21h2

L
1

1

4S 12
Ax21h2

L
D 2 2

1

4G x

Ax21h2
.

~19!

The data in Fig. 13 is fitted using Eq.~19!, with h55 mm
and A and L as free parameters. The result isA5(41.8
o-
,

og
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60.7) nm andL5(15.5560.03) mm. These error bars ar
for this set of curves. For other runs the average value ofA is
about 42 nm with an overall error of62 nm. These values
are in agreement with the literature@3,5#. The contour length
L for l-DNA is listed to be 16.5mm. We have found
lengths that vary from 13 to 22mm.

VI. CONCLUSIONS

We have presented a thorough account on the dyna
light scattering from a microsphere trapped by optical tw
zers. The results are fully consistent with the theory of
Brownian motion of a harmonically bound particle. By me
suring the backscattering profile and ACFs, we obtain
amplitude and decay time of the Brownian motion of t
microsphere. From the amplitude we obtain the transve
stiffness of the optical tweezer. From the decay time, we
also obtain the transverse stiffness if we know the fricti
coefficient of the bead, checking the consistency of
method. Or since we know the stiffness we can obtain
friction on the bead if it is unknown. Thus, with this tech
nique we can obtain simultaneously the stiffness and the f
tion on the bead. It has potential applications in rheologi
studies of viscoelastic media. We showed two application
the method developed here: in the first~measurement of par
allel Stokes friction as a function of height!, we obtain the
tweezer’s stiffness from the ACF amplitude and the fricti
on the bead from the decay time. In the second~measure-
ment ofl-DNA entropic elasticity!, we obtain the tweezer’s
transverse stiffness from the decay time of ACFs and
knowing the backscattering profile we can measure the
placement of the bead in relation to its equilibrium positio
when the DNA molecule attached to the bead is stretch
From the product of the trap stiffness by bead displacem
we obtain the DNA entropic force as a function of its elo
gation. Results are in good agreement with the literature
ues, indicating that the method developed here can be
sistently used.
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